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Capillary Corner Flows With Partial and Nonwetting Fluids

D.A. Bolleddula and M.M. Weislogel
Portland State University
Portland, Oregon 97207

Abstract

Capillary flows in containers or conduits with interior corners are common-
place in nature and industry. The majority of investigations addressing such
flows solve the problem numerically in terms of a friction factor for flows along
corners with contact angles below the Concus-Finn critical wetting condition for
the particular conduit geometry of interest. This research effort provides missing
numerical data for the flow resistance function FZ for partially and non-wetting
systems above the Concus-Finn condition. In such cases the fluid spontaneously
de-wets the interior corner and often retracts into corner-bound drops. A banded
numerical coefficient is desirable for further analysis and is achieved by careful
selection of length scales xs and ys to nondimensionalize the problem. The opti-
mal scaling is found to be identical to the wetting scaling, namely xs = H and
ys = H tan a, where H is the height from the corner to the free surface and
a is the corner half-angle. Employing this scaling produces a relatively weakly
varying flow resistance FZ and for subsequent analyses is treated as a constant.
Example solutions to steady and transient flow problems are provided that illus-
trate applications of this result.

1 Introduction

The importance of capillary driven flows and phenomena has been outlined by numerous
investigators [1],[2], and [3]. In this work, flows along interior corners, more accurately termed
interior edges, are revisited to extend current analytical capabilities to systems exhibiting
partial and non-wetting conditions. Such conditions are common to a variety of applications
employing aqueous fluids such as fuel cells, flows in porous media, and waste water recycling
aboard spacecraft.

1.1 Mechanism and Scope

Interior corners or edges are observed to spontaneously wick liquid into them if 0 < π/2 -
a, where 0 is the contact angle and a is the corner half-angle. This condition was formally
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(a)	 (b)

Figure 1: (a) Liquid column in an interior corner satisfying the Concus-Finn condition,
0 < 7r/2 — a. Fluid wicks along corner in the positive z-direction. (b) Cross-flow domain of
wetting corner flow

addressed by Concus and Finn [4] and is referred to in this report as the Concus-Finn
condition. The mechanism for this flow is caused by a negative or favorable pressure gradient
established in the wetting liquid as sketched in Fig. 1(a). The local radius of curvature is
such that R2 < R 1. Since the pressure drop across the liquid-gas interface is inversely
proportional to R, a negative pressure gradient from position 1 to 2 results inducing a flow
along the corner in the positive z-direction. When 0 > 7r/2 —a, the curvature of the liquid-gas
interface is reversed. In such partially-wetting or non-wetting conditions the fluid retracts or
‘de-wets’ the corner. As shown in Fig. 2(a), a positive pressure gradient in the fluid causes
the fluid to flow in the negative z-direction and potentially break into drops under certain
criteria [5].

Under assumptions such as a slender column, negligible inertia, and streamwise curvature,
investigators such as Ayyaswamy [6], Ransohoff & Radke [7], and Romero & Yost [8] solved
what is commonly referred to as the ‘cross-flow’ problem in the domain depicted in Fig. 1(b).
Other limiting solutions for certain duct flows can also apply to the corner flow problem, i.e.
rhombic duct sections Shah [9], see also White [10] for a wetting fluid in an interior corner
satisfying the Concus-Finn wetting condition. Analysis of the dynamics of this flow requires
the solution to the z-component Navier-Stokes equation for the velocity distribution in a
2-D section depicted in Fig. 1(b). An important aspect of the solution to this equation is
the numerical coefficient that characterizes the average velocity or (flow resistance). The
importance of this coefficient is revealed in subsequent solutions to dynamic flow problems
of interest. All methods used by previous researchers create a coefficient that depends on
the geometry to various degrees. It is observed that careful selection of geometric scales is
critical to an accurate description of the flow domain and can relieve much of the numerical
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(a)	 (b)

Figure 2: (a) Liquid column in an interior corner above the Concus-Finn condition, θ >
π/2 — a. Fluid withdraws from the corner and flows in negative z-direction. (b) Cross-flow
domain of de-wetting corner flow

dependence of the flow resistance coefficient. The scaling introduced in Weislogel and Lichter
(W&L) [11] allows for a narrowly banded flow resistance function for wetted corners. The
approach was predicated on assumptions such as locally parallel flows with negligible inertia.

To date, numerical methods have solved the cross-flow problem with results in terms
of a flow resistance coefficient or friction factor. Ransohoff and Radke [7] identified their
numerical coefficient as β while Ayyaswamy [6] determined K. Both coefficients produce
undue dependence on the numerics for subsequent use in analytic solutions to more complex
problems. W&L produced a narrowly banded coefficient 1/8 < FZ (a, θ) < 1/6 that varies
weakly on the geometry because of the choice of scales used to nondimensionalize the gov-
erning equations. Nardin [12] used the same approach for the dissimilar contact angle corner
flow problem which provided a similar though slightly expanded dependence. Nardin’s 2-D
cross-flow problem was solved for sharp corners, rounded corners, and dissimilar wetted cor-
ners as sketched in Fig. 3. The present effort addresses de-wetting flow sections Fig. 3(d),
and provides a first comprehensive solution set for all wetting scenarios. A narrowly banded
numerical coefficient is desired and thus a strong emphasis is placed on identifying proper
geometric length scales. The results from this study provide missing corner flow information
required to solve several problems of practical concern.

The analysis begins with the reduction of the 3-D Navier Stokes equations through non-
dimensionalization using appropriate scales. A zeroth order Poisson equation results from
the constraint of a slender column, dominant cross-stream curvature, and negligible inertia.
An expanded set of non-dimensionalized variables is introduced for the reduced z-component
Navier Stokes equation. The wetting flow domain is revisited with the intent of capturing
optimal length scales for the de-wetting flow problem. Attention is focused on determin-
ing proper geometric length scales for the de-wetting domain in order to narrowly confine
the numerical flow resistance coefficient throughout both the wetting and de-wetting flow
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(a)	 (b)	 (c)	 (d)

Figure 3: Interior corner cross-flow domains: (a) Sharp Corner, (b) Rounded Corner, (c)
Dissimilarly Wetted Corner, and (d) De-wetting Corner

regimes. Considerable detail is presented to convey the extent of the effort made to identify
the optimal scales despite the null result. Two benchmarks for the de-wetting cross-flow
problem serve to verify the numerical results. Sample analytical solutions in the de-wetting
regime are derived for three problems of applied interest.

It was determined after the concerted scaling effort that the wetting scaling identified in
W&L provides the narrowest numerical coefficient for the de-wetting domain. This result
was unexpected but is both instructive and convenient in choosing proper geometric length
scales. The power of this result allows all analytic solutions previously obtained for a wetting
corner to be applied to the de-wetting phenomena as well.

2 Governing Equations: Retracting Corner Flow

2.1 Analysis of Flow in an Isolated Corner

A de-wetting flow of a partial or non-wetting liquid in an isolated corner with corner half-
angle a is depicted in Fig. 4. The dimensional coordinate axes are labelled with the z'-axis
aligned with the corner axis. The small parameter arising in the governing equations is the
slenderness ratio of the column and is defined by E = H/L. For the time being, the scales
used in W&L for a fluid satisfying the Concus-Finn condition θ = π/2 — a will be employed:
namely that x' — xs = H. We will report the appropriateness of this choice later. The y'

length scale is perhaps not as obvious to identify and requires further consideration for the
de-wetting regime. In W&L, for wetted corners, y' — ys = H tan a which accurately confines
the cross-flow domain and produces a weakly varying numerical coefficient. A different y'

length scale is expected for the flow in the de-wetting regime. By introducing the parameter
Tc , which is a ratio of the ys and xs length scales, a degree of freedom is added such that
ys ti HTc allowing greater flexibility in the pursuit of optimal scales.

Table 1 provides the quantities used to non-dimensionalize the governing equations. The
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Figure 4: A liquid column in a sharp corner of angle 2α for B > π/2 - α. The characteristic
height and length of the fluid column are H and L, respectively. The corner is ‘de-wetted’
by such a fluid.

Table 1: Nondimensionalized quantities where primes denote dimensional in/dependent
variables.

Lengths	 Velocities	 Other
x = x'/H u = u'/EW P = Hf P'/σ
y = y'/HTc v = v'/EWTc t = Wt'/L
z = z'/L w = w'/W A = A'/H2Tc

S = S'/H (w) = (w) '/W Q̇ = Q̇'/WH2Tc

h = h'/H W = Eσ/µf (T 2c /(1+T2
c  )) Tc = ys/xs

G = G'/L
ym = y 'max / HTc

pressure is scaled using σ/Hf , where R is the radius of curvature of the free surface in the
x' − y' plane and f is a geometric function of proportionality between R and H that describes
the curvature of the interface in the x' − y' plane. The function f is accurate at zeroth order
when the interface curvature along the flow direction is small, E2 f « 1. The characteristic
velocity scale in the flow direction is determined by a balance of pressure and viscous forces
as shown explicitly in [13] to be

(
∂P
^(

T2
^

x2scw' ∼ W≡. (1)
µ ∂z	 1 + T 2s	 c

Substitution of the non-dimensional quantities in Table 1 into the individual component
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equations of Navier-Stokes gives t

and

where

and in the limit of E2 « 1

E2R
Du = —

Px + E2V2u,	 (2)

E2RT2 Dv

	

=—Py + E2T2
c V2v,	 (3)c Dt

R
Dt 

= —Pz + V2w,	 (4)

D
≡

O O	 O	 O

	

+ uax + va +waz ,	 (5)
Dt Ot

V2 ≡
Tc
 O

2	
1 

O2	 2 Tc O
2
	 (6)

1 + T2 Ox2 + 1 + T2 Oy2 + E 1 + T2 Oz2
,
	

6

and

R = fSu

^
E2	 T2 ) 2

.
1 + T 2c

	 (7)

The parameter Su = σpH/µ2 is the Suratman number and provides a measure of inertia in
the flow. For many terrestrial corner flow tests Su ∼ O(1), however Su » 1 is common in
the low-g environments provided in drop tower tests ( Su ∼ O (104)).

The continuity equation is

V· v=0.	 (8)

The boundary conditions for the system of equations are no slip along the walls and zero
shear stress on the free surface. For a complete listing of the transverse and normal shear
stress conditions see [14].

2.2 Asymptotic equations

The governing equations are greatly simplified by an asymptotic method employing the
slenderness ratio E as the small parameter. In what is frequently referred to as the lubrication

T Subscript notation on pressure terms denote differentiation with respect to designated variable.
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approximation for slender fluid columns where E2 « 1 and R < O (E2), the Navier-Stokes
equations reduce to the single zeroth order z-component equation

19P	 T^ 192w	 1 192w
	=+

	
(9)

19z 1 + T, 19x2 1 + T, 19y2

where T, - ys/xs alluded to in § 2.1. Equation 9 is referred to as the dimensionless cross-flow
problem and describes the velocity distribution of the fluid in any cross-flow section. With
the added flexibility provided by T, a variety of potential length scales can be tested system-
atically with relative ease. The utility of this parameter will become apparent as numerous
scales were investigated while only a sample are presented. As necessary background, the
scaling employed by W&L for wetting corners is reviewed first. The de-wetting cross-flow
sections are then presented, solved, and optimal scalings pursued.

2.3 Wetting Formulation

For corner flows with wetting fluids the length scales xs = H and ys = H tan a are such that
T, - tan a and Eq. 9 simplifies to

19P 192w 2	 192

w cos2 a,	 (10)
19z

=
19x2 sin a + 

19y2

subject to no slip on the walls

w = 0	 on	 y = ±x,	 (11)

and no shear on the free surface

19w 19S 19w

—	
cot2 a = 0	 on	 x = S.	 (12)

19x	 19y 19y

Under the assumptions of a slender column E2« 1 and negligible transverse surface curvature
E2 f « 1, the free surface S (y, z, t) is defined as a construct of circular arcs in x — y planes
satisfying the contact angle condition at the wall. In the dimensionless domain the free
surface is given by

S (y, h) = h(1 + f) — (h2f2 — y2 tan2 a) 1/2 ,	 (13)

where 0 < y < ym and

_
	

sin a
f cos θ — sin a

The governing Navier-Stokes equation under the assumptions described above are solved
for the z-component velocity distribution w (x, y, z, t). The dimensionless average velocity
(w) = (w) (z, t) is expressed as

(14)
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(w) = —FZ h2
 OP

Oz,
	 (15)

where

OP = 1 Oh

Oz	 h2 Oz,	
(16)

and where FZ is the numerically solved coefficient formally defined as

FZ = 
x

A-
s

 

J J 
w dx dy.	 (17)

The dynamics of a wetting or de-wetting flow in a corner is governed by the global mass
balance equation:

O^	 Oz	
(18)

where the dimensionless area is

A = h2 FA / tan a,	 (19)

with

Sin S cos 0
AF = f 2

	

	
— S. (20)

sin a

FA is a dimensionless area function determined by the cross flow geometry. Upon substitution
of A and the average velocity given by Eq. 15, the leading order governing equation becomes

	

O A 	h2FA (21)
Ot 

[h2F

	tan a]	 Oz [tan a 

(—FZOh)]

 Oz .

The dimensionless cross-flow problem modeled by Eqs. (10)-(12) is solved in the domain
sketched in Fig. 5(b). It is important to note the transformation that takes place from the
dimensional domain depicted in Fig. 5(a) to the dimensionless domain Fig. 5(b). The walls
in the dimensionless domain are locked at 7r/4 regardless of the corner angle a. Also the
free surface is stretched into a portion of an ellipse instead of a circle. The dimensionless
coefficient FZ (a , 0) is determined numerically but is confined for all values of a and 0 due to
the choice of length scales xs and ys . For all values of a and 0 satisfying the Concus-Finn
condition 0 ≤ 7r/2 - a, 1/8 < FZ ≤ 1/6. In fact it can be shown that much of this limited
dependence is due to a and that FZ = 1/6(1 - 1/5 sin 2a) provides a fair correlation of FZ±
2.5% in the wetting regime (note this correlation is devoid of 0-dependence. Conditions for
which 0 ≥ 7r/2 - a above this range have not yet been studied by our research group, nor to
our knowledge in the literature. It is intended that a physically motivated choice of scales
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(a)	 (b)

Figure 5: (a) Schematic of dimensional cross section for 0 < 7r/2 - a. (b) Dimensionless
cross-flow area for x ti H and y — Htan a. The fluid surface intersects the wall at ym = h f
sin 6 cot a where 6 = 7r/2 - a - 0. The contact angle 0 and the interface curvature angle 6
appear as 0* = 7r /4 - tan- ' (tan a tan 6) and 6* = tan- ' (sin 6 cos a/(cos 0 - cos a sin 6)).

for the de-wetting domain will confine FZ to a similar, narrowly banded coefficient as for the
wetting case. It is not clear a priori which choice of scaling will provide this behavior for FZ .
However, if FZ can be confined to a narrow band, further theoretical analysis for de-wetting
flows can proceed directly.

2.4 De-wetting Formulation

The remainder of this report addresses the de-wetting problem where

7r/2 —a<0<7r
	

(22)

Figure 6(a) provides a typical section of the corner flow. The key geometric parameters
of the problem are a, 0, and 6, where 6 = 7r/2 - a - 0. The length scales for the wetting
cross-sections are used initially before other scales are employed. This provides a benchmark
for FZ values in the limiting case of 0 \ 7r/2 — a. An interesting aspect of the de-wetting
cross-section is that the curvature function f naturally changes sign across the Concus-
Finn critical wetting condition of 0 = 7r/2 - a. This sign change directly affects only one
function in the cross-flow problem Eqs. (10)-(12). The equation that defines the free surface
incorporates a sign function on f in front of the square root term specifying the top(+) or
bottom(-) half of the circular arc. The dimensionless free surface function is defined below
for the geometry shown in Fig. 6(b),
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(a)	 (b)

Figure 6: (a) Schematic of dimensional cross section when 0 > 7r/2 - a. (b) Dimensionless
cross-flow area where 0* = 7r/4 + tan- ' (-tan a tan 6) and 6* = tan- ' (sin 6 cos a/(cos 0 +
cos a sin 6))

S (y, h) = h(1 + f) — sgn (f) (h
2f2 — y2 tan2 

a) '/2 .
	 (23)

The cross-sectional area is represented by A' = h' 2FA . It is interesting to note that the
dimensionless area function FA is identical for both wetting (Fig. 5) and de-wetting (Fig. 6)
cross-sections $ .

It seems intuitive that xs = H should be a reasonable choice to normalize the height of
the interface h. However the choice of ys is complicated by the various limits of the geometry.
For example, if ys = H tan a, ys falls outside the cross-flow section seen in Fig. 7. However,
as a approaches 7r/2, then ys —→ oc and guarantees that gradients in the flow are limited
to the x '-direction as expected. Although this fact appears to characterize the limits of the
geometry for this problem, a systematic optimization of scales is warranted.

3 Numerical Results, Fi

3.1 Scaling

A well selected scaling should confine the physical domain and accurately represent the
governing equations for the limits of the problem. Here we pursue scaling that confines the
cross-sectional area in the wetting and de-wetting cases as well as solve cross-flow equations
accurately for all geometrical limits. For the cross-sections studied the contact angle is

# For clarity in reference to the cross-flow domain, wetting and de-wetting cross sections are defined here
when the free surface is concave up (positive curvature) and concave down (negative curvature), respectively.
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Figure 7: Depiction of wetting scaling xs = H and ys = H tan a on a large corner angle
de-wetting section.

(a)	 (b)	 (c)	 (d)

Figure 8: Characteristic corner flow cross-sections to cross-flow problems. (a) characteristic
wetting cross-section when 0 < 7r/2 - a. (b) De-wetting cross-section with acute 0, 7r/2 - a
< 0 < 7r/2. (c) De-wetting cross-section with obtuse 0, 7r/2 < 0 < 7r - a. (d) De-wetting
cross-section with highly obtuse 0, 7r - a < 0 < 7r, or ’non-wetting’ systems where 0 > 7r /2.

divided into the four types specified in Fig. 8. The wetting cross-sections have been studied
extensively for sharp corners [6] and rounded corners [15].

An effort here is made to determine optimal length scales for the wetting and de-wetting
cross sections. Wetting sections are revisited in this study with hopes of confining FZ to
a narrower band. This process involves determining the correct combination of x' and y'

length scales such that FZ can be narrowly banded and treated as a constant in the governing
evolution Eq. 21 for more important solutions to follow.

Figure 9 depicts various geometrically motivated length scales chosen to determine if FZ

can be more accurately confined for the wetting and de-wetting sections. Before discussing
the results of FZ employed with various length scales, a brief description of the numerical
procedure will be outlined.

The numerical results (FZ ) are obtained using MATLAB® implementing a finite ele-
ment method. The final solution is obtained after the initial mesh is adaptively refined
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Figure 9: Depiction of various xs and ys : (a) xs = H and ys = H tan a, (b) xs = H and
ys = Hw tan a, (c) xs = H and ys = FAH, (d) xs = H and ys = RS, (e) xs = H and
ys = Ha, and (f) xs = FAH and ys = H sin a.
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Figure 10: Plot of FZ for various scales. The legend in Fig. (a) identifies regimes circles for
0 < 7r/2 - a, triangles for 7r/2 - a < 0 < 7r/2, and diamonds for 7r/2 < 0 < 7r - a.
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(a)
	

(b)

(c)	 (d)

Figure 11: Contour plots from numerical solution: (a) a = 60° and 0 = 0° (b) a = 60°and
0 = 90° (c) a = 1°and 0 = 180° , and (d) a = 90° and 0 = 180°

until convergence is achieved. All FZ ’s computed have 50,000-60,000 elements. Run time
is approximately three minutes for each computation of FZ using a 1.86 GHz AMD Athlon,
running XP2500+. Figure 10 shows FZ scaled with the corresponding length scales in Fig. 9.
It is immediately obvious from Fig. 10(a) that the wetting scaling confines FZ to the highest
degree. Figure 11 shows select contour plots from the numerical output.

It must be made clear that the scaling identified in Fig. 9(a) and 9(b) was employed
and solved in separate numerical codes at the resolution specified above. In this report, the
numerical values presented are computed employing the scaling in Fig. 9(a). It can be shown
that all other results may be and thus are determined through the following transformation

[FZ \

	 ) ]

1 + T^ 1 

=
[
FZ \ 1 + T22

(24)

FZ ’s investigated are determined by solving Eq. 24 for [ FZ ] 2 shown explicitly to be

[FZ ] 2 -

_ [FZ

 C 
1]+T2̂  J 1	 (25)

C

T2

1+T̂2
 2

The numerically computed FZ is identified by the subscript 1 while the desired FZ is denoted
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by 2. Thus the Fi pursued is found through a ratio of xs and ys length scales multiplied by
the computed Fi denoted by the subscript 1. At this point it should be appreciated how the
parameter Tc provides flexibility in the pursuit of optimal scaling.

The forgoing discussion refers only to Fi computed for 0 < 0 < 7r — a. A variety of
length scales are attempted but the six identified in Fig. 9 identify the most insightful and
physically motivated choices. When xs = H and ys = H tan a, the wetting cross-section
is accurately confined as depicted in Fig. 9(a), while only neglecting a narrow portion of
the flow area where negligible flow is present. If this same idea is applied to the de-wetting
cross-sections then xs = H and ys = Hw tan a would make a good choice of length scales,
9(b). Perhaps surprisingly, this actually creates a wider spread of Fi as seen in Fig. 10(b).
Other length scales shown in Figs. 9 (c)-(f) are attempted and motivated by the geometry
of the flow domain keeping in mind the limits of a and 0, but none to date provide a tighter
banding of Fi . It is clear by inspection of Fig. 10(a) that this choice confines Fi to a narrower
band. Figure 10(e) shows the results when xs = H and ys = Ha which bands Fi effectively
for a < 40° but the collapse is lost for a > 40 °. In an attempt to verify the appropriateness
of xs = H, a choice motivated by the area function was implemented. Figure 10(f) has
xs = FAH and ys = H sina . This again did not provide a tighter bound on Fi . It was
originally anticipated that the wetting scaling was neither physical or optimal for the de-
wetting cross-sections, but after numerous combinations of xs and ys , length scales xs = H
and ys = H tan a appear to provide the tightest confinement of Fi for both the de-wetting
and wetting cross-sections. One reason for this is seen in the limits of governing Eq. 10.
When a —→ 0, the wxx derivative term becomes insignificant, similarly when a —→ 7r/2,
the wyy term vanishes. Currently this behavior is believed to confine Fi to the highest degree
for the de-wetting sections.

3.2 Benchmark: Fully Developed Laminar Duct Flow

To confirm the numerical procedure and results for the computation of Fi , the technique is
compared to an exact analytical solution for flow through a circular sector duct found in
White [10]. A no slip boundary condition is applied to the boundary identifying the free
surface in the cross-flow formulation and Fi is computed for 0 < a < 7r/ 2 with 0 = 7r/2.
The exact solution of flow through a circular sector duct is presented in terms of the average
velocity as follows,

^
f (1+ T2 tan a— a 32a4	1	 ∂h

(w)exact = —
	

(26)
2a	 T^	 4	 ^5 	i2 (i + 2a/^r) 2 (i — 2a/7r) az'

i=1,3,5

where the terms multiplied by ∂h/∂z on the right hand side of Eq. 26 are equivalent to Fi

with Tc = tan a. The modified Poisson equation 10 is solved numerically and integrated over
the domain to determine the dimensionless average velocity from which Fi can be compared
to the exact solution, Fiexact.
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Figure 12 shows excellent agreement for all a with results accurate to 4 digits. The
numerical code thus verifies its utility and implementation for the de-wetting corner cross-
flow problem. The numerical code also verifies wetting corner flow benchmarks listed in [16]
with accuracy to X0.5% or better, i.e. FZ = 1/6 as a —→ 0 first shown in [14].

0
0	 10	 20	 30	 40	 50	 60	 70	 80	 90

a

Figure 12: Comparison of exact solution of fully developed laminar flow through a circular
sector duct compared to numerical solution

3.3 Fi Summary

An accurate numerical procedure to compute FZ was detailed in § 3.2. In § 3.1 an optimal
scaling for the wetting cross-sections is also acceptable and perhaps best for the de-wetting
cross-sections too. For the wetting cross-sections 1/8< FZ < 1/6 and achieves a X 14% error
when FZ 1/7. For the de-wetting cross-sections 0.141 < FZ < 0.244 with a X27% error
when FZ 0.192 with 7r/2 — a < 0 < 7r — a. Over 700 values are computed and shown in
Fig. 13. Figure 14 shows FZ versus a where 7r — a < 0 < 7r. For this ‘non-wetting’ regime FZ

is not nearly as confined but the wetting scaling still provides the tightest bound given the
limits of the cross-flow geometry. A complete catalogue of FZ for given corner-half angle a
and contact angle 0 is provided in the Appendix.

It is clear that the range of FZ values for the de-wetting corner sections expands compared
to the wetting sections and in particular for the non-wetting regime where 0 > 7r/2. However,
xs = H and ys = H tan a appear to be the optimal scales identified to date. This result was
not expected a priori, but is appreciated in retrospect as analytical solutions obtained by
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Figure 13: FZ (a, 0). FZ is plotted for 0 < a < 7r/2 in the wetting sections 0 < 7r/2 — a and
two de-wetting regimes 7r/2 — a < 0 < 7r/ 2 and 7r/2 < 0 < 7r — a

1

0
0	 10	 20	 30	 40	 50	 60	 70	 80	 90

a

Figure 14: FZ (a, 0). FZ is plotted for 0 < a < 7r/ 2 in the third, non-wetting regime where
7r—a<0<7r
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previous investigators can be recovered since identical scaling accounts for both the wetting
and de-wetting corner flow cross-sections.

Since FZ is computed and the error associated with treating it as a constant is known,
the governing equation arising from the global mass balance can be solved applicable to a
variety of flow scenarios.

4 Analytic Solutions: De-Wetted Corners

4.1 Steady Solution

Many interesting and potentially applicable analytical solutions to Eq. 21 can be found.
Several important ones are presented here. First by noting that FA and FZ are not functions
of z and by introducing the transformation -r = FZt/2, the governing evolution equation
reduces to

∂h 
= 2 

∂h2 

+ h 
∂2 h

. (27)
∂-r	 ( ∂z)	 ∂z2

The steady solution to Eq. 27 is

h = (B1 + B2 z ) 1/3	 (28)

where B1 and B2 are constants of integration which can be determined by specified boundary
conditions. By specifying h(z1 ,-r)=H1 and h(z2 ,-r)=H2 and solving Eq. 28, the steady
capillary flow rate for a fluid of column length G can be found. The steady solution expressed
in dimensionless form by Eq. 28 for the case of h(0) = H1 and h(G) = H2 is expressed
dimensionally as

h' = (H3
1 — (H3

1 — H32) 
z l 1/3	

(29)
G

and

Q̇' =
FZ FAor sin2 α (

H3
1 — H2) .	 (30)

3µfG

This solution is identical to that presented in [14] for the wetting problem, only the flow
retraction is seen through the curvature function f as it changes sign above the Concus-Finn
condition.
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Figure 15: Isometric view of flow in a corner with a convex free surface and sinusoidal
perturbation applied to the free surface.

4.2 Infinite Column Solution

This problem describes the motion of a slightly perturbed liquid column in an interior corner
originally addressed in [14]. This problem is approached with an asymptotic analysis where
the disturbance is modeled by a sinusoidal perturbation of the axial meniscus centerline
height h, as in Fig. 15. A regular asymptotic expansion for h is

	

h = h° + Ehs + E2 h2 +...	 (31)

Substituting 31 into Eq. 27 yields the O (1) equation

2	 2
 °

)

19τ
°

 
= 2 

19Z + 
h°

 19z2°	
(32)

and the O (E) equation is

19hs = 
19h° 19hs	192 hs	192 h° 	 (33)

19τ 
4	

+ 
h°
	

+ hs
19z 19z	1 Z 2	 19z2

If ho = const is a solution to Eq. 32 then it describes a uniform height interface at steady
state. Solving Eq. 33 to O (E) results with an asymptotic sequence shown as

h = h° + EC4exp[—A2h°τ] cos(Az + C5 ) + O (E2) (34)

where A is the dimensionless wave number ( A = A'/L) of some perturbation to the column
of fluid and C4 and C5 are constants determined by the boundary conditions. The main dif-
ference between the wetting regime and the de-wetting regime solutions can be seen through
redimensionalization of the time constant in the exponent,
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Figure 16: Isometric view of a fluid pinned along the edges of a corner where in the inlet is
perturbed above and below the Concus-Finn condition, respectively.

F sin 2 a at
λ2h0τ ∼ E2 

Z

	

	 (35)
f pH

Since the sign of f is negative in the de-wetting regime, the solution is unstable as the
exponent is positive leading to exponential growth of the perturbation. The behavior in the
solution verifies the instability of a liquid column in a corner identified by Langbein [5]. The
criteria is defined when the length of the column L > 27rR (R = Hf ), upon which the liquid
column will break into drops to achieve a lower energy state.

4.3 Axially Perturbed Interface Solution

The scenario depicted in Fig. 16 is of a fluid pinned along the edges of a corner. The interface
is perturbed axially, but because the contact line is pinned, in effect, the contact angle is
perturbed from the Concus-Finn condition by a small amount O (z, t). When released the
over-damped free surface will return to its original orientation due to the higher pressure
on the convex side and lower pressure on the concave side of the interface. During the flow
the contact angle will vary with time and location along the corner axis until equilibrium is
established.

We begin the solution procedure by defining the constant height h^ f as measured from
the corner to the free surface when θ = 7r/2 — α (ref. Fig. 16). It can be shown geometrically
that the relationship between h and h^ f is

_ h^f tan α
h	

f sin δ
. (36)
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We can apply the perturbation through the contact angle θ such that

θ (z, t) = π/2 — α + β.	 (37)

The plus or minus sign identifies either the de-wetting or wetting perturbation on the contact
angle, respectively. If we expand the functions f and sin δ in h for small β we obtain

^

	

h = h^ f + h
f tan

α0 2	 + O (β2).	 (38)

In a similar manner the area function FA becomes

FA = tan α + β 13 tan2 α + O (β2 ).	 (39)

Substituting h and FA into Eq. 21 yields

2∂β tan α ∂β tan2 α 2∂β =	 1∂2β tan α ∂β 2 tan α ∂2β 
—T —β3 ∂t 	 6 β ∂t 	 4	 ∂t Fih^f 2 ∂z2	 3 ( ∂z)	 3 ∂z2

tan2 α ∂β 2 tan2 α 2 ∂2β tan3 α 2 ∂β 2
 tan3 α 3 ∂2β 	 40T β T β —] .

12 (∂z)	 24	 ∂z2	 8	 ( ∂z)	 24	 ∂z2	( )

Applying the regular perturbation

β = β0 + ^β1 + ^2β2 + ... ,	 (41)

upon substitution into Eq. 41 the O (1) equation for β (z, t) is

2 ∂β0 tan α ∂β0 tan2 α 2 ∂β0 	 ∂2β0 tan α ∂β0 2 tan α ∂2β0

3 ∂t	 6 β0 ∂t
T

4 β0 ∂t
= Fih^f

 
1
2 ∂z2	 3 ( ∂z)	 3 β0 ∂z2

tan2 α	 2 t α 2 ∂2β0 tan3 α 2 ∂β0 
2 tan3 α 3 ∂2β0	 (42)

12 
β0

 (∂β0)an2

∂z 	 24 β0 ∂z2	 8 β0 

(

∂z)	 24 β0 ∂z2

The O (E) equation is

2 ∂β1 — tan α	 ∂β1	 ∂β0 	 tan2 α
(β0 	 + β1	T

β02∂β1 ∂β0+ 2β0β13 ∂t	 6 ∂t ∂t 4 ∂t ∂t

Fih^f

1 ∂2β1

12
2 tan α ∂β0 ∂β1 tan α ∂2β1	 ∂2β0

	—(β0 	 + β1∂z2	 ∂z2

)

∂z2 3	 ∂z ∂z 3

tan2 α 	 ∂β0 ∂β1 ∂β0 tan2 α 2 ∂2β1 ∂2β0

12
2β0 ∂z ∂z + β1

(

∂z

) 2)

24

(
β0 ∂z2 

+ 2β0β1 ∂z2

)

tan3 α 	 ∂β0 ∂β12β0
∂β0 	

2
+ 2β0β1 

(

∂z)

tan3 α	 3 ∂2β1	 2	 ∂2β0
(00

	
+3 β1∂z2	

∂z2

)
. 43(	 )8 ∂z ∂z 24
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If we note that 00 = 0 is a solution to Eq. 42 then Eq. 43 dramatically reduces to

+
2 1901 

= 
FZ h^f 19201
	

(44)
3 19t	 2 19z2

If we let T = (FZ h^ f4t)/3 then the O (E) Eq. becomes

+ 1901 = 
19201	 (45)

19T19z2

For a single sinusoidal mode disturbance Eq. 45 can be solved and expressed to O (E) as

0 = E exp[+WT ] A cos (V1Wz + B) + O (E2).	 (46)

where W is related to both wavelength and decay rate of the perturbation and A and B are
the constants determined from the boundary conditions. If we substitute Eq. 46 into Eq.
38 we can express the solution in terms of the interfacial height h as

h(z, T) = h^ f I 1 + E exp[+WT ] A cos(
V1W_z + B) tan 

al
 
+ O (E2).	 (47)

The (+ ) symbol designates when 0 > 0 (+) or 0 < 0 ( — ), or, in other words, when the
perturbation is initialized above (de-wetting) or below (wetting) the Concus-Finn condition
(θ = 7r/2 — a). Similar to the behavior seen in the infinite column problem, the exponent
reveals the time constant,

WT — E2 
3 FZh^f sin2 a σt	

48
4	 f	 µH,	

( )

which compares with Eq. 35. Remembering that the curvature function f is positive in
the wetting regime and negative in the de-wetting regime, the solution of Eq. 47 preserves
the exponential decay behavior for all time as the flow settles to equilibrium. A similar
perturbation solution should be possible for interfaces perturbed about any initially pinned
configuration.

5 Conclusion

The interior corner flow problem is revisited and completed for partial or non-wetting fluids.
Specifically in this report, the case of a retracting or de-wetting corner flow is solved above
the Concus-Finn condition where θ > 7r/2 — a. Under the assumptions of a slender column,
low gravity, negligible inertia and surface curvature along the flow direction, the ‘cross-
flow’ problem must be solved in the form of a modified Poisson equation. The cross-flow
problem requires the solution of the velocity distribution from which the average velocity is
determined. Through a concerted choice of length scales a flow resistance function can be
narrowly confined to an O (1) constant. This is highly desirable to relieve undue numerical
dependence in the pursuit of subsequent solutions to practical problems of interest.
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In order to produce a narrowly banded flow resistance function a systematic scaling
approach is pursued to determine optimal length scales xs and ys in the cross-flow domain.
It is found that the scaling (xs = H and ys = H tan a) employed in the wetting cross-
flow problem also provides the narrowest flow resistance for the de-wetting problem. This
result was not expected but is appreciated since dynamic flow problems can be solved and
compared to the wetting corner flow solutions previously obtained by W&L [11] and others.
The cross-flow problem is solved in the range of 7r/2 - a < 0 < 7r. Values for FZ computed
for the full range of a and 0 are tabulated in the Appendices. The results produce a banded
function 0.141 < FZ < 0.244 for 7r/2 - a < 0 < 7r — a which is an expanded range of the flow
resistance found for the wetting section-the results being within X27% when FZ —_ 0.192. FZ

is not nearly as confined in the range of 7r - a < 0 < 7r but is still bounded. With FZ known
as a weak and known 0(1) function for 7r/2 - a < 0 < 7r — a, it can be treated as a constant
and implemented into a global mass balance. The result yields a second order nonlinear
partial differential equation that is solved for three cases that illustrate the effectiveness of
the formulation: (1) Steady flows, and (2) perturbed liquid columns including a (3) new
perturbed column solution for pinned contact line conditions.
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A Fi tables for corner flow

The format for Tables 2-6 follows the form shown below. Note that a dash (-) indicates a
numerical solution can only be computed when 0 exceeds the indicated tabular value by ::L

0.03%. Note also that a * identifies when 0 is within ::L 0.03% for the computed FZ.

	

• • •a	 •••
...
.	 ..

0 • • •	 FZ (a, 0)

...
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Table 2: Numerical computation of FZ for α 0° to 10°

B\a	 0.001	 1	 2	 3	 5	 10
0	 0.1666	 0.1651	 0.1636	 0.1621	 0.1591	 0.1521

0.001 0.1666	 0.1651	 0.1636	 0.1621	 0.1591	 0.1521
5	 0.1666	 0.1651	 0.1636	 0.1621	 0.1592	 0.1522
10	 0.1666	 0.1651	 0.1637	 0.1622	 0.1593	 0.1525
15	 0.1666	 0.1652	 0.1637	 0.1623	 0.1595	 0.1528
20	 0.1666	 0.1652	 0.1638	 0.1624	 0.1597	 0.1532
25	 0.1666	 0.1653	 0.1639	 0.1626	 0.1599	 0.1536
30	 0.1666	 0.1653	 0.1640	 0.1627	 0.1602	 0.1540
35	 0.1666	 0.1654	 0.1641	 0.1629	 0.1604	 0.1545
40	 0.1666	 0.1655	 0.1643	 0.1631	 0.1607	 0.1550
45	 0.1666	 0.1655	 0.1644	 0.1633	 0.1610	 0.1556
50	 0.1666	 0.1656	 0.1646	 0.1635	 0.1614	 0.1561
55	 0.1666	 0.1657	 0.1647	 0.1637	 0.1617	 0.1567
60	 0.1666	 0.1658	 0.1649	 0.1640	 0.1621	 0.1574
65	 0.1666	 0.1659	 0.1651	 0.1643	 0.1625	 0.1581
70	 0.1666	 0.1660	 0.1653	 0.1646	 0.1630	 0.1588
75	 0.1666	 0.1661	 0.1655	 0.1649	 0.1635	 0.1597
80	 0.1666	 0.1662	 0.1658	 0.1653	 0.1641	 0.1606*
85	 0.1666	 0.1664	 0.1661	 0.1658	 0.1647*	 0.1617
87	 0.1666	 0.1665	 0.1663	 0.1658*	 0.1650	 0.1621
88	 0.1666	 0.1665	 0.1663*	 -	 0.1651	 0.1623

89.1	 0.1666	 0.1666	 0.1664	 0.1661	 0.1653	 0.1626
90	 0.1666	 0.1667	 0.1668	 0.1661	 0.1654	 0.1628
95	 0.1670	 0.1672	 0.1672	 0.1662	 0.1641	 0.1641
100	 0.1666	 0.1672	 0.1676	 0.1672	 0.1671	 0.1656
105	 0.1675	 0.1681	 0.1687	 0.1681	 0.1673	 0.1673
110	 0.1666	 0.1678	 0.1688	 0.1687	 0.1693	 0.1692
115	 0.1681	 0.1694	 0.1705	 0.1706	 0.1714	 0.1714
120	 0.1666	 0.1686	 0.1702	 0.1705	 0.1721	 0.1739
125	 0.1690 0.1712	 0.1730	 0.1739	 0.1768	 0.1768
130	 0.1666	 0.1696	 0.1723	 0.1730	 0.1760	 0.1802
135	 0.1703 0.1736	 0.1764	 0.1784	 0.1842	 0.1842
140	 0.1666	 0.1711	 0.1751	 0.1812	 0.1812	 0.1888
145	 0.1720 0.1769	 0.1812	 0.1845	 0.1943	 0.1943
150	 0.1666	 0.1731	 0.1791	 0.1812	 0.1885	 0.2008
155	 0.1745	 0.1817	 0.1882	 0.1933	 0.2086	 0.2086
160	 0.1666	 0.1762	 0.1850	 -	 0.1991	 0.2181
165	 0.1783	 0.1890	 0.1986	 0.2062	 0.2296	 0.2296
170	 0.1666	 0.1808	 0.1940	 0.1986	 0.2151	 0.2438
175	 -	 -	 -	 -	 0.2261	 0.2614
177	 -	 0.1817*	 -	 0.2093	 0.2315*	 0.2697
178	 -	 -	 0.1977	 0.2112	 -	 0.2740
179	 -	 0.1834*	 -	 -	 0.2370	 0.2790
180	 0.1666	 -	 -	 -	 -	 -
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Table 3: FZ for α 15° to 45°

	

B\a	 15	 20	 25	 30	 35	 40	 45

	

0	 0.1460	 0.1407	 0.1363	 0.1329	 0.1303	 0.1285	 0.1275

	

5	 0.1461	 0.1409	 0.1366	 0.1332	 0.1307	 0.1291	 0.1282

	

10	 0.1464	 0.1413	 0.1372	 0.1340	 0.1316	 0.1302	 0.1297

	

15	 0.1469	 0.1420	 0.1380	 0.1349	 0.1328	 0.1316	 0.1314

	

20	 0.1475	 0.1427	 0.1388	 0.1360	 0.1341	 0.1331	 0.1331

	

25	 0.1480	 0.1434	 0.1397	 0.1370	 0.1353	 0.1345	 0.1348

	

30	 0.1487	 0.1442	 0.1407	 0.1381	 0.1365	 0.1359	 0.1364

	

35	 0.1493	 0.1450	 0.1416	 0.1392	 0.1377	 0.1373	 0.1378

	

40	 0.1500	 0.1458	 0.1425	 0.1402	 0.1389	 0.1385	 0.1392

	

45	 0.1507	 0.1466	 0.1435	 0.1413	 0.1400	 0.1398 0.1405*

	

50	 0.1514	 0.1475	 0.1444	 0.1423	 0.1412	 0.1410*	 0.1418

	

55	 0.1522	 0.1484	 0.1455	 0.1434	 0.1423*	 0.1422	 0.1431

	

60	 0.1530	 0.1494	 0.1465	 0.1446*	 0.1436	 0.1435	 0.1444

	

65	 0.1539	 0.1504 0.1477*	 0.1458	 0.1448	 0.1448	 0.1458

	

70	 0.1549	 0.1515*	 0.1489	 0.1471	 0.1462	 0.1462	 0.1472

	

75	 0.1560*	 0.1528	 0.1503	 0.1485	 0.1477	 0.1478	 0.1488

	

80	 0.1572	 0.1541	 0.1517	 0.1501	 0.1494	 0.1495	 0.1506

	

85	 0.1585	 0.1556	 0.1534	 0.1519	 0.1512	 0.1514	 0.1525

	

87	 0.1590	 0.1563	 0.1541	 0.1526	 0.1520	 0.1522	 0.1534

	

88	 0.1593	 0.1566	 0.1545	 0.1530	 0.1524	 0.1526	 0.1538

	

89	 0.1596	 0.1570	 0.1548	 0.1534	 0.1528	 0.1531	 0.1543

	

90	 0.1600	 0.1573	 0.1552	 0.1538	 0.1532	 0.1535	 0.1547

	

95	 0.1616	 0.1592	 0.1573	 0.1560	 0.1555	 0.1559	 0.1572

	

100	 0.1635	 0.1614	 0.1596	 0.1585	 0.1581	 0.1586	 0.1600

	

105	 0.1656	 0.1638	 0.1623	 0.1613	 0.1611	 0.1617	 0.1633

	

110	 0.1680	 0.1666	 0.1653	 0.1646	 0.1645	 0.1653	 0.1670

	

115	 0.1708	 0.1697	 0.1688	 0.1683	 0.1684	 0.1694	 0.1712

	

120	 0.1740	 0.1734	 0.1728	 0.1725	 0.1729	 0.1741	 0.1762

	

125	 0.1777*	 0.1776	 0.1774*	 -	 0.1781	 0.1795	 0.1818

	

130	 0.1819	 0.1825	 0.1827	 0.1832	 0.1841	 0.1858	 0.1885

	

135	 0.1869	 -	 0.1889	 0.1898	 0.1911	 0.1932	 0.1962

	

140	 0.1927	 0.1948	 0.1962	 0.1976	 0.1993	 0.2018 0.2052*

	

145	 -	 -	 0.2048*	 0.2067	 0.2089	 0.2119* 0.2158*

	

150	 0.2078	 0.2120	 0.2149	 0.2175	 0.2203* 0.2238* 0.2283*

	

155	 -	 0.2231	 0.2269	 0.2302*	 0.2337 0.2379* 0.2430*

	

160	 0.2293	 0.2364	 0.2414	 0.2456	 0.2498	 0.2547 0.2607*

	

165	 0.2436	 0.2525	 0.2588	 0.2639	 0.2691* 0.2749* 0.2819*

	

170	 0.2611*	 0.2721	 0.2798* 0.2862*	 0.2923	 0.2992	 0.3074

	

175	 0.2831* 0.2962*	 0.3056 0.3132*	 0.3206	 0.3287	 0.3384

	

177	 0.2948* 0.3075*	 0.3176	 0.3258 0.3336* 0.3423*	 0.3526

	

179	 0.3038* 0.3195	 0.3306 0.3395* 0.3477	 0.3570 0.3681*

	

180	 0.3096* 0.3259* 0.3373* 0.3459	 0.3553 0.3648* 0.3762
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Table 4: FZ for α 50° to 75°

	

O\a	 50	 55	 60	 65	 70	 75

	

0	 0.1273	 0.1277	 0.1289	 0.1307	 0.1331	 0.1359

	

5	 0.1282	 0.1289	 0.1305	 0.1330	 0.1366	 0.1416

	

10	 0.1300	 0.1313	 0.1336	 0.1371	 0.1422	 0.1495

	

15	 0.1321	 0.1339	 0.1368	 0.1412	 0.1473	 0.1560*

	

20	 0.1342	 0.1363	 0.1398	 0.1447 0.1515*	 0.1610

	

25	 0.1361	 0.1386	 0.1423	 0.1477*	 0.1549	 0.1647

	

30	 0.1379	 0.1406	 0.1446*	 0.1502	 0.1576	 0.1676

	

35	 0.1395	 0.1423*	 0.1465	 0.1522	 0.1598	 0.1698

	

40	 0.1410*	 0.1439	 0.1482	 0.1540	 0.1617	 0.1716

	

45	 0.1424	 0.1454	 0.1497	 0.1556	 0.1632	 0.1730

	

50	 0.1437	 0.1468	 0.1512	 0.1570	 0.1646	 0.1743

	

55	 0.1451	 0.1482	 0.1526	 0.1584	 0.1659	 0.1755

	

60	 0.1464	 0.1495	 0.1539	 0.1598	 0.1672	 0.1766

	

65	 0.1478	 0.1510	 0.1554	 0.1612	 0.1686	 0.1779

	

70	 0.1493	 0.1525	 0.1569	 0.1627	 0.1701	 0.1793

	

75	 0.1509	 0.1541	 0.1586	 0.1644	 0.1717	 0.1810

	

80	 0.1527	 0.1560	 0.1604	 0.1663	 0.1736	 0.1829

	

85	 0.1547	 0.1580	 0.1625	 0.1684	 0.1758	 0.1851

	

87	 0.1556	 0.1589	 0.1634	 0.1693	 0.1768	 0.1861

	

88	 0.1560	 0.1594	 0.1639	 0.1698	 0.1773	 0.1866

	

90	 0.1570	 0.1603	 0.1649	 0.1709	 0.1784	 0.1877

	

95	 0.1596	 0.1630	 0.1677	 0.1737	 0.1813	 0.1908

	

100	 0.1625	 0.1660	 0.1708	 0.1770	 0.1848	 0.1944

	

105	 0.1658	 0.1695	 0.1745	 0.1808	 0.1888	 0.1987

	

110	 0.1697	 0.1736	 0.1787	 0.1853	 0.1936	 0.2038

	

115	 0.1741	 0.1782	 0.1836	 0.1905	 0.1991	 0.2097

	

120	 0.1793	 0.1836	 0.1893	 0.1966	 0.2056	 0.2167

	

125	 0.1853	 0.1899	 0.1960	 0.2036	 0.2132	 0.2347

	

130	 0.1922	 0.1972	 0.2037	 0.2119	 0.2221	 0.2347

	

135	 0.2003	 0.2058	 0.2128	 0.2217	 0.2327	 0.2462

	

140	 0.2098	 0.2158	 0.2235	 0.2332	 0.2451	 0.2599

	

145	 0.2210	 0.2276	 0.2361	 0.2467	 0.2599	 0.2762

	

150	 0.2341* 0.2416*	 0.2511	 0.2629	 0.2776	 0.2958

	

155	 0.2497 0.2582*	 0.2688	 0.2821	 0.2987	 0.3195

	

160	 0.2684* 0.2780 0.2901* 0.3052* 0.3244 	 0.3484

	

165	 0.2907 0.2997* 0.3156*	 0.3333*	 0.3556	 0.3841

	

170	 0.3176	 0.3305	 0.3469	 0.3677	 0.3943 0.4241*

	

175	 0.3504 0.3656*	 0.3851	 0.4101*	 0.4431	 0.4871*

	

177	 0.3654	 0.3818 0.4029* 0.4302* 0.4663 0.5158*

	

179	 0.3818* 0.3994	 0.4029 0.4523* 0.4927* 0.5479*

	

180	 0.3905	 0.4089 0.4326* 0.4640* 0.5062* 0.5655
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Table 5: FZ for α 80° to 90°

	

B\a	 80	 85	 87	 88	 89	 89.999
0	 0.1388	 0.1415	 0.1423	 0.1426	 0.1427 0.1666

	

0.01	 0.1388	 0.1415	 0.1423	 0.1426	 0.1428	 -
1	 0.1397	 0.1444	 0.1487	 0.1536	 0.1674* 0.2255
2	 0.1416	 0.1496	 0.1578	 0.1665*	 0.1833	 0.2253
3	 0.1466	 0.1551	 0.1660*	 0.1758	 0.1931	 0.2252
4	 0.1466	 0.1602	 0.1724	 0.1829	 0.1994 0.2250
5	 0.1492 0.1647*	 0.1778	 0.1883	 0.2038 0.2284
6	 0.1518	 0.1687	 0.1822	 0.1925	 0.2069	 0.2248
7	 0.1542	 0.1722	 0.1859	 0.1959	 0.2093	 0.2246
8	 0.1565	 0.1753	 0.1890	 0.1986	 0.2112	 0.2244
9	 0.1586	 0.1780	 0.1916	 0.2009	 0.2126	 0.2243

	

10	 0.1606*	 0.1805	 0.1938	 0.2027	 0.2138 0.2280

	

11	 0.1625	 0.1826	 0.1957	 0.2043	 0.2148	 0.2238

	

12	 0.1642	 0.1845	 0.1974	 0.2056	 0.2156	 0.2236

	

13	 0.1658	 0.1862	 0.1988	 0.2068	 0.2162	 0.2234

	

14	 0.1673	 0.1877	 0.2001	 0.2078	 0.2168 0.2232

	

15	 0.1687	 0.1891	 0.2012	 0.2086	 0.2172	 0.2274

	

16	 0.1700	 0.1903	 0.2022	 0.2093	 0.2175	 0.2229

	

17	 0.1712	 0.1914	 0.2030	 0.2100	 0.2178	 0.2225

	

18	 0.1723	 0.1924	 0.2038	 0.2105	 0.2180 0.2223

	

19	 0.1733	 0.1933	 0.2044	 0.2110	 0.2182	 -

	

20	 0.1743	 0.1941	 0.2050	 0.2114	 0.2185	 0.2266

	

21	 0.1752	 0.1948	 0.2055	 0.2117	 0.2184	 0.2216

	

22	 0.1760	 0.1955	 0.2060	 0.2120	 0.2186	 0.2214

	

23	 0.1768	 0.1961	 0.2064	 0.2123	 0.2186	 0.2212

	

24	 0.1775	 0.1967	 0.2068	 0.2125	 0.2125	 0.2210

	

25	 0.1782	 0.1971	 0.2071	 0.2127	 0.2189	 0.2257

	

30	 0.1809	 0.1990	 0.2082	 0.2133	 0.2188 0.2248

	

35	 0.1829	 0.2002	 0.2087	 0.2135	 0.2185	 0.2239

	

40	 0.1843	 0.2010	 0.2090	 0.2134	 0.2181	 0.2230

	

45	 0.1855	 0.2015	 0.2091	 0.2133	 0.2177 0.2223

	

50	 0.1865	 0.2020	 0.2093	 0.2133	 0.2174 0.2218

	

55	 0.1874	 0.2025	 0.2095	 0.2133	 0.2173	 0.2215

	

60	 0.1884	 0.2031	 0.2099	 0.2136	 0.2174 0.2215

	

65	 0.1895	 0.2039	 0.2105	 0.2141	 0.2179	 0.2218

	

70	 0.1908	 0.2050	 0.2115	 0.2150	 0.2186	 0.2225

	

75	 0.1923	 0.2063	 0.2127	 0.2163	 0.2198 0.2236

	

80	 0.1942	 0.2081	 0.2145	 0.2179	 0.2215	 0.2252

	

85	 0.1964	 0.2103	 0.2167	 0.2201	 0.2237 0.2274

	

90	 0.1991	 0.2131	 0.2195	 0.2229	 0.2265	 0.2302

	

91	 0.1997	 -	 -	 -	 0.2268	 0.2294

	

92	 0.2003	 -	 -	 0.2243	 -	 -

	

93	 0.2010	 -	 0.2215	 -	 -	 -

	

94	 0.2017	 -	 -	 -	 -	 -
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Table 6: FZ for α 80° to 900 (cont.)

B\a	 80	 85	 87	 88	 89	 89.999
95	 0.2023	 0.2165	 0.2230	 0.2264	 0.2297	 0.2326
100	 0.2062	 0.2206	 0.2272	 0.2306	 0.2341	 0.2372
105	 0.2108	 0.2255	 0.2323	 0.2358	 0.2393	 0.2427
110	 0.2162	 0.2315	 0.2384	 0.2421	 0.2458	 0.2490
115	 0.2227	 0.2385	 0.2458	 0.2496	 0.2534	 0.2565
120	 0.2303	 0.2470	 0.2546	 0.2586	 0.2627	 0.2652
125	 0.2394	 0.2570	 0.2651	 0.2694	 0.2733	 0.2753
130	 0.2501	 0.2690	 0.2777	 0.2823	 0.2864	 0.2872
135	 0.2629	 0.2834	 0.2928	 0.2977	 0.3022	 0.3012
140	 0.2781	 0.3007	 0.3111	 0.3161	 0.3213	 0.3177
145	 0.2965	 0.3216	 0.3333	 0.3393	 0.3450	 0.3374
150	 0.3186	 0.3471	 0.3605	 0.3673	 0.3740	 0.3612
155	 0.3456	 0.3787	 0.3942	 0.4024	 0.4098	 0.3907
160	 0.3790	 0.4185	 0.4372	 0.4466	 0.4545	 0.4279
165	 0.4210	 0.4700	 0.4941	 0.5059	 0.5162	 0.4772
170	 0.4753	 0.5395	 0.5723	 0.5887	 0.6024	 0.5481
175 0.5485* 0.6413	 0.6920	 0.7208	 0.7496	 0.6675
177 0.5862* 0.6983* 0.7647	 0.8040	 0.8414	 0.7518
179 0.6309* 0.7721* 0.8704* 0.9364*	 1.0093	 0.1203
180 0.6553* 0.8170* 0.9380*	 1.0308	 1.1693* 1.1203*
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